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ABSTRACT

Using a physical model to generate
correlated parameters, and response
modelling to overcome long response
times, even complex circuits can be
optimized for maximum yield. 1In this
paper, a MMIC distributed amplifier was
simulated and optimized for mavimum
design yield.

INTRODUCTION

Using conventional optimization
strategies available in popular CAD
tools, while carrying performance driven
optimization, a designer typically
optimizes performance only for the
nominal values of the circuit
parameters, and neglects any statistical
fluctuations about the nominal point.
For the circuit designed in this
fashion, the yield at the nominal point
may not result in an acceptable number
of "good" circuits once the statistical
contribution is considered. Yield
optimization is obviously a desirable
design procedure, as it simultaneously
optimizes both performance and yield.
However, it has not gained ready
acceptance because of three factors:
long simulation times, unavailability of
the appropriate statistical data, and
unrealistic constraints imposed by the
simulation environment. The purpose of
this paper is to describe those
constraints, and to illustrate how they
may be removed.

YIELD OPTIMIZATION

Widely used linear circuit simulators
such as SuperCompact [1] and Touchstone
[2] allow statistical analysis of
arbitrary microwave circuits. Typically
a single statistical analysis consists
of a frequency sub-loop in which the
circuit response is evaluated at every
frequency point. This loop is then
nested inside an "outcome" loop. In the
ocutecome loop, every statistical variable
is randomly perturbed simultaneously
with every other statistical variable.
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The outcome loop is then repeated a
number of times; this number is usually
referred to as the number of outcomes.
The output response of each trial is
stored, and may later be plotted as a
histogram of values at a particular
frequency point. Fig.1l shows a simple
flow diagram of the statistical analysis
used in SuperCompact.

To illustrate the concepts used in this
paper, we chose a two-stage distributed
amplifier circuit [3]. The desired
response of this circuit is for the
linear gain to lie between 10.7 and 11.3
db over a frequency range of 4 to 17
GHz. After performance optimization in
SuperCompact, statistical perturbations
were added to the circuit parameters.
These parameters included the FET small-
signal model parameters and the sheet
resistivity of the material used to
construct the termination resistors.

The magnitudes of the perturbations were
chosen from typically quoted values for
commercial foundries. The active device
parameter variations typically dominate
other uncertainaties in the circuit.
Using Monte Carlo analysis, the yield
was estimated to be 74.5%. The yield
window is often defined differently from
the desired response window that might
be used for performance optimization.
Here, only circuits that had gain
between 9.8 dB and 11.7 dB in the
frequency range of 4 to 17 Ghz were
accepted. The simulation time to
perform this analysis over frequency
with 200 trials was 1991 CPU seconds on
a MicroVax 3500. The circuit can also
be optimized for maximum yield. To
achieve this in most linear simulators,
the statistical analysis is nested
inside an additional loop that performs
optimization. This loop calculates the
yield and perturbs the optimization
variables to determine the effect of
that variable on overall yield. From
the individual perturbations, an error
vector can be found and an optimum
search direction calculated. A number
of iterations of the optimization loop
is then performed until the process
converges to a yield maximum. If a

1991 IEEE MTT-S Digest



simulation at a single frequency point
takes time Ts, and the number of
optimization iterations is No, and if
there are Np optimization variables, Ns
statistical outcomes (trials), and Nf
frequency points, this procedure takes
time

No * Ns * Np * Nf * Ts,

which for large circuits is obviously
very large. In the case of the
distributed amplifier example above, for
200 statistical outcomes, optimization
of the yield took 3488 CPU seconds using
SuperCompact on the Microvax 3500, and
the simulated yield improved to 96%.
Further improvements in the design yield
would require modifications to the
circuit topology. This is a fairly
lengthy procedure, although not an
impractically long time for a relatively
complex circuit. However, two problems
diminish the confidence the designer has
in the results. The first is that the
statistical fluctuations are assumed
independent. This is an unrealistic
assumption especially for active
devices. The second problem is that of
obtaining data. None of the major FET
suppliers provide meaningful (useable)
statistical data about their devices,
even measured data. Furthermore, even
if a designer were to obtain a large
sample of devices and MMIC test
structures and characterize them, the
sheer volume of measured data would be
difficult to incorporate into most
circuit designs. This could be
partially overcome by providing simple,
compact representations of this data in
the form of the mean and standard
deviations, but even this is not enough,
because the data is correlated, and the
correlation coefficients must also be
extracted. The following section
addresses solutions to the problems we
have identified above.

IMPROVEMENTS TO YIELD OPTIMIZATION
ALGORITHMS

Distributions.

One way to overcome the restrictions on
using meaningful statistical data is to
allow the user to define his own
statistical distributions. This can be
achieved with a uscer-defined statictical
distribution feature [1]. For instance,
if a user is building a filter from
discrete components, and requires
accuracy in a particular value of
inductor, it is possible he will pre-
screen those components from a given
normally distributed lot. The centrally
located values will then be depleted
from the lot, leaving the remainder with
a non-normal distribution. Using this
feature, and using labels to tie
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together the statistical variables, non-
correlated distributions can be handled.
However, this feature requires a high
degree of knowledge on the part of the
user and it is unlikely most designers
would go through the effort of
transforming their data in order to
achieve this. Recently therefore, we
introduced correlated parameters, which
can be either generated internally or
directly from the circuit file
description.

Correlations.

The linear correlation relationship
between n statistical variables can be
represented by an nxn correlation
matrix, which is a positive semi-
definite symmetrical matrix with unit
diagonal elements. The off-diagonal
element Cij of correlation matrix is
just the linear correlation coefficient
between ith and jth statistical
variables. Taken from the circuit file,
the correlation matrix is decomposed to
its LDL decomposition form, which is the
product of three matrices: a lower
triangular matrix L, a diagonal matrix
D, and the transposed matrix of L. This
can be used to transfer n normal
independently distributed variables to n
normal correlated variables with desired
correlated coefficients.

Response Modeling.

In order to speed up yield optimization,
we implemented a modified quadratic
response model [4-6]. This model
estimates the circuit performance as a
function of the perturbed variables by
analytically fitting to a series of
simulations. Since the same model is
used to evaluate the error functions for
both different outcomes and for
different optimized parameters in
different iterations, the number of
complete simulations is reduced from
No*Ns*Np to (1+2*Ntp), as the model is
used to generate consequent circuit
outcomes, once correctly built. Here
Ntp is the total number of parameters,
i.e. the sum of the number of
statistical variables and the number of
non-toleranced optimized parameters, so
has the same order of magnitude as Np,
the number of optimized parameters.

With the same number of outcomes, the
difference in yield estimated by the
model and calculated by exact simulation
is less than a few percent. Since the
model can be built from a series of
complete simulations just once, and
reused for the Monte-Carlo trials,
offers a practical way to speed up
circuit simulation time.
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Device Modeling.

TEFLON [7] is a physical FET model for
which the user enters the physical
characteristics of a FET, such as the
doping density, gate width and length,
and material properties. Using this
model, independent statistical
parameters associated with the
fabrication process can be transformed
into corresponding statistical
distributions for the electrical
parameters through the process

model. For this example, we made the
assumption that the peak doping density
in the FET channels has a normal
distribution. We also made the
assumption that all other process
variations could be ignored to first
order. Based upon a measured Gaussian
distribution of the doping density with
standard deviation of 2.77%, forty
device simulations were performed using
Microwave Harmonica, to determine an
equivalent small-signal circuit. This
method avoids the problems associated
with obtaining statistical data directly
from the measurements. Using measured
S-parameters, measurement errors and
deembedding errors are included in the
S-parameter data; these can
substantially skew the statistical
distribution. The remaining major
source of error in using either measured
or simulated S-parameter sets is in
determining the small-signal equivalent
circuit, as residual errors remain as a
result of the imperfect fit between the
data and the small-signal model used.
This is unavoidable when using any
large-signal representation of a device.
However, the fitting errors were
consistently small for all the S-
parameter sets fitted, and their effects
are neglected when calculating
correlation coefficient. The standard
deviation and correlation coefficients
between each of these elements (for the
assumed fluctuation in doping density)
are given in Table 1. The major
observation to make is that, a variation
in a single process parameter can result
in correlated, statistical fluctuations
in the equivalent circuit model. To
illustrate this, Figure 4 shows a
crossplot of Cgs and Gds, which have a
correlation coefficient of .989. This
correlation information was supplied to
the simulator in the form of a
correlation matrix. Note that the
nominal values of the model parameters
we used were those originally measured
and extracted by the foundry using
conventional methods, and on which the
design was based. Not all of the
process parameters were available for
input to the device simulator and
especially the device parasitics had to
be added afterwards. We used only the
normalized distributions and the
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correlations as they were estimated from
multiple device simulations using
TEFLON.

SIMULATON RESULTS

The two-stage distributed amplifier
described earlier was again subjected to
yield analysis, but this time with the
relevant statistical parameters having
the correlations described in Table 1.
The resultant yield prediction was 70.5%
as opposed to 74.5% obtained with
independent distributions using the same
number of outcomes. The circuit was
then optimized for yield, subject to the
same criteria as above. This time, six
of the twelve statistical parameters
were correlated with each other; the
remaining six were passive elements
whose values were independent of the
doping density. The final yield
estimate after the optimization was 92%,
which took 1501 seconds on the MicroVax
3500. This final yield estimate was
then tested using "exact" Monte Carlo
yield analysis without response
modeling, which gave a figure of 91% as
an exact yield estimate. Yield
optimization of the same circuit using
exact Monte Carlo analysis would have
required approximately 1.5e5 seconds.

DISCUSSION

As suspected, when yield analysis of a
circuit is performed with and without
considering the correlations between
circuit parameters, a significant
difference is observed resulted in an
optimistic estimate of the yield. In
general the sign of the change is
related to the topology, the type, and
the amount of correlation that exists,
so that any meaningful generalizations
are not possible. By way of
illustration, Fig.3 shows two possible
response windows mapped into parameter
space; on the first, the correlations
between the two circuit parameters
selected as axes fall in such a way as
to maximize the number of outcomes
falling within the desired mapping of
the response window; on the second, they
minimize the yield. It is possible to
account for any other source of
disturbance by the approach we have
taken. When this is done it is very
likely that the spreads in the
statistics will increase. Even though
we have modelled the disturbances in our
example with normal distributions for
the sake of simplicity, this is not a
restriction. 1In fact, there is some
evidence that FET parameter statistics
are non-Gaussian. In such a case one
may resort to user-defined table input
for the statistics, and avoid lengthy
transformations and normalizations of



the initial statistical data. However,
experience indicates that to first
order, the type of the distribution has
very little effect on the circuit
sensitivities compared with the spread
of the distribution. It is of some
interest to see how the nominal values
of optimizable parameters changed as a
result of de-sensitization of the
amplifier gain to peak doping density
variations. The nominal values of some
of the optimized transmission line
lengths did not need to vary more than
about 5% to accomplish more than a 28%
increase in the overall yield. In such
a case, this is fortunate since it
implies that slight rework of the layout
can result in large improvements in
productivity. It is also obvious that a
circuit of this complexity can not
routinely be optimized for yield without
the speed improvements attained by
response modeling.

CONCLUSION

We have shown and illustrated an
approach that should enable better
cicuit designs to be produced. Firstly,
fitting the modelled circuit response to
a simplified model that is a function
only of the statistically perturbed
circuit parameters enables enormous
speed increases with little observed
degradation in accuracy. Secondly,
modelling devices at the process level
allows meaningful data about the
statistical parameters of devices to be
deembedded. Finally, improvements to
the simulators, some of which now accept
correlated and user-defined statistical
data entry, allow realistic yield
determination during the design phase.

TABLE 1

G Rl CGS CDG CDS GDS
G 1
RI -57 1
CGS .76 -9 1
cbG .7 -91 .9 1
cDs  -13 -2 -12 .08 1
GDS 77 -92 .99 .93 -008 1
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Fig. 4 - Nominal amplifier galn before and after
design centering.
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Fig 2 - Crossplot of the two FET model
parameters.
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